Problem

Source:

Tags: combinatorics



Let $n$ be a fixed positive integer. Let $$A=\begin{bmatrix} a_{11} & a_{12} & \cdots &a_{1n} \\ a_{21} & a_{22} & \cdots &a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{bmatrix}\quad \text{and} \quad B=\begin{bmatrix} b_{11} & b_{12} & \cdots &b_{1n} \\ b_{21} & b_{22} & \cdots &b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ b_{n1} & b_{n2} & \cdots &b_{nn} \end{bmatrix}\quad$$be two $n\times n$ tables such that $\{a_{ij}|1\le i,j\le n\}=\{b_{ij}|1\le i,j\le n\}=\{k\in N^*|1\le k\le n^2\}$. One can perform the following operation on table $A$: Choose $2$ numbers in the same row or in the same column of $A$, interchange these $2$ numbers, and leave the remaining $n^2-2$ numbers unchanged. This operation is called a transposition of $A$. Find, with proof, the smallest positive integer $m$ such that for any tables $A$ and $B$, one can perform at most $m$ transpositions such that the resulting table of $A$ is $B$.