Problem

Source: RMO TST 2007, day 6

Tags: inequalities, trigonometry, three variable inequality, Fourier



For $n\in\mathbb{N}$, $n\geq 2$, $a_{i}, b_{i}\in\mathbb{R}$, $1\leq i\leq n$, such that \[\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1, \sum_{i=1}^{n}a_{i}b_{i}=0. \] Prove that \[\left(\sum_{i=1}^{n}a_{i}\right)^{2}+\left(\sum_{i=1}^{n}b_{i}\right)^{2}\leq n. \] Cezar Lupu & Tudorel Lupu