Some notzero reals numbers are placed around circle. For every two neighbour numbers $a,b$ it true, that $a+b$ and $\frac{1}{a}+\frac{1}{b}$ are integer. Prove that there are not more than $4$ different numbers.
Problem
Source: St Petersburg Olympiad 2012, Grade 10, P4
Tags: number theory
09.10.2017 23:29
We say that a pair $(a,b)$ has the property $\mathcal{P}$ if $a,b\in\mathbb{R}\setminus\{0\}, a+b\in\mathbb{Z}, \dfrac{1}{a}+\dfrac{1}{b}\in\mathbb{Z}$. Some obviously properties: $(a,b)$ has the property $\mathcal{P} \Longleftrightarrow (-a,-b)$ has the property $\mathcal{P}$; $\forall a\in\mathbb{R}\setminus\{0\}, (a,-a)$ has the property $\mathcal{P}$. Let $a_1, a_2,\dots,a_n$ the numbers placed on the circle and $a\in\{a_1, a_2,\dots,a_n\}$. 1) If $a\in\mathbb{Q}\setminus\{0\}$, then $a_i\in\mathbb{Q}\setminus\{0\}, \forall i\in\{1,2,\dots,n\}$. 2) If $a\in\mathbb{R}\setminus\mathbb{Q}$, then $a_i\in\mathbb{R}\setminus\mathbb{Q}, \forall i\in\{1,2,\dots,n\}$. Let $(a,b)$ a pair with the property $\mathcal{P}$. Denote $a+b=S\in\mathbb{Z}, \dfrac{1}{a}+\dfrac{1}{b}=k\in\mathbb{Z}$. Case A). For $S=0$ results $b=-a$. Case B). $S\ne 0$. We will prove: if $a$ is a number on the circle, exists at most a single value $b\ne -a$ such that $(a,b)$ has the property $\mathcal{P}$. For $S\ne 0$ results $k\ne 0, ab=\dfrac{S}{k}$. Results: $a$ and $b$ are the solutions of the second degree equation $x^2-Sx+\dfrac{S}{k}=0$. $a,b=\dfrac{S\pm\sqrt{S^2-\dfrac{4S}{k}}}{2}$. B1). The rational solutions $(a,b)$ are $a=b, |a|\in\left\{\dfrac{1}{2};1;2\right\}$.
. Results: if exists $a\in\mathbb{Q}$ on the circle, there are maximum two distinct values on the circle: $a$ and $-a$, where $|a|\in\left\{\dfrac{1}{2};1;2\right\}$. 2) The irrational solutions $(a,b)$. If $\sqrt{S^2-\dfrac{4S}{k}}\notin\mathbb{Q}$, then $a=u+v\sqrt{t}, b=u-v\sqrt{t}$, where $u,v\in\mathbb{Q}\setminus\{0\}$ and $t\ge2$ is a square-free integer. This representation $a=u+v\sqrt{t}$ is unique (does not exist two different triplets $(u,v,t), (u_1,v_1,t_1)$ such that $a=u+v\sqrt{t}=u_1+v_1\sqrt{t_1})$.
In this case, for a given $a=u+v\sqrt{t}$, exists a single value $b\ne -a$ such that $(a,b)$ has the property $\mathcal{P}$, respectively $b=u-v\sqrt{t}$. The possible neighbors of $a$ are $-a$ and $b$, the possible neighbors of $-a$ are $a$ and $-b$, the possible neighbors of $b$ are $-b$ and $a$, the possible neighbors of $-b$ are $b$ and $-a$. Conclusion: If $a$ is a number on the circle, $a\in\mathbb{R}\setminus\mathbb{Q}$, then $a$ has the form $a=u+v\sqrt{t}$ and the possible numbers on the circle are: $a_i\in\{u+v\sqrt{t}, u-v\sqrt{t}, -u+v\sqrt{t}, -u-v\sqrt{t}\}$. A possible configuration of the numbers on the circle is: $a,b,-b,-a$, in this order.