$n \geq k$ -two natural numbers. $S$ -such natural, that have not less than $n$ divisors. All divisors of $S$ are written in descending order. What minimal number of divisors can have number from $k$-th place ?
Source: St Petersburg Olympiad 2012, Grade 11, P5
Tags: number theory
$n \geq k$ -two natural numbers. $S$ -such natural, that have not less than $n$ divisors. All divisors of $S$ are written in descending order. What minimal number of divisors can have number from $k$-th place ?