$x_1,...,x_n$ are reals and $x_1^2+...+x_n^2=1$ Prove, that exists such $y_1,...,y_n$ and $z_1,...,z_n$ such that $|y_1|+...+|y_n| \leq 1$; $max(|z_1|,...,|z_n|) \leq 1$ and $2x_i=y_i+z_i$ for every $i$
Source: St Petersburg Olympiad 2012, Grade 11, P4
Tags: algebra
$x_1,...,x_n$ are reals and $x_1^2+...+x_n^2=1$ Prove, that exists such $y_1,...,y_n$ and $z_1,...,z_n$ such that $|y_1|+...+|y_n| \leq 1$; $max(|z_1|,...,|z_n|) \leq 1$ and $2x_i=y_i+z_i$ for every $i$