RagvaloD wrote:
For positive is true $$\frac{3}{abc} \geq a+b+c$$Prove $$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq a+b+c$$
Romania 2005
If $a + b + c\geq \frac{1}{a} +\frac{1}{b} + \frac{1}{c}$ and $a,b,c\geq 0$ then prove:$$a +b+c\geq \frac{3}{abc}$$