$ABCD$ is convex quadrilateral with $AB=CD$. $AC$ and $BD$ intersect in $O$. $X,Y,Z,T$ are midpoints of $BC,AD,AC,BD$. Prove, that circumcenter of $OZT$ lies on $XY$.
Source: St Petersburg Olympiad 2009, Grade 10, P2
Tags: geometry, circumcircle
$ABCD$ is convex quadrilateral with $AB=CD$. $AC$ and $BD$ intersect in $O$. $X,Y,Z,T$ are midpoints of $BC,AD,AC,BD$. Prove, that circumcenter of $OZT$ lies on $XY$.