Problem

Source: Saint Petersburg 2017

Tags: combinatorics, graph theory, Russia, Petersburg



In a country, some pairs of cities are connected by one-way roads. It turns out that every city has at least two out-going and two in-coming roads assigned to it, and from every city one can travel to any other city by a sequence of roads. Prove that it is possible to delete a cyclic route so that it is still possible to travel from any city to any other city.