Problem

Source: 2017 CGMO P6

Tags: number theory, algebra, roots of unity



Given a finite set $X$, two positive integers $n,k$, and a map $f:X\to X$. Define $f^{(1)}(x)=f(x),f^{(i+1)}(x)=f^{(i)}(x)$,$i=1,2,3,\ldots$. It is known that for any $x\in X$,$f^{(n)}(x)=x$. Define $m_j$ the number of $x\in X$ satisfying $f^{(j)}(x)=x$. Prove that: (1)$\frac{1}n \sum_{j=1}^n m_j\sin {\frac{2kj\pi}{n}}=0$ (2)$\frac{1}n \sum_{j=1}^n m_j\cos {\frac{2kj\pi}{n}}$ is a non-negative integer.