Problem

Source: 2017 CGMO Problem4

Tags: analysis, algebra, unsolved, algebra unsolved



Partition $\frac1{2002},\frac1{2003},\frac1{2004},\ldots,\frac{1}{2017}$ into two groups. Define $A$ the sum of the numbers in the first group, and $B$ the sum of the numbers in the second group. Find the partition such that $|A-B|$ attains it minimum and explains the reason.