Problem

Source: Bulgarian MO 2007, Day 1, Problem 2

Tags: combinatorics proposed, combinatorics, Bulgaria



Find the greatest positive integer $n$ such that we can choose $2007$ different positive integers from $[2\cdot 10^{n-1},10^{n})$ such that for each two $1\leq i<j\leq n$ there exists a positive integer $\overline{a_{1}a_{2}\ldots a_{n}}$ from the chosen integers for which $a_{j}\geq a_{i}+2$. A. Ivanov, E. Kolev