Problem

Source: Bulgarian MO 2007, Day 1, Problem 1

Tags: geometry, trigonometry, geometric transformation, reflection, rhombus, inradius, circumcircle



The quadrilateral $ABCD$, where $\angle BAD+\angle ADC>\pi$, is inscribed a circle with centre $I$. A line through $I$ intersects $AB$ and $CD$ in points $X$ and $Y$ respectively such that $IX=IY$. Prove that $AX\cdot DY=BX\cdot CY$.