Problem

Source: Sharygin Finals 2017, Problem 8.8

Tags: geometry, square, Projective, circumcircle



Let $ABCD$ be a square, and let $P$ be a point on the minor arc $CD$ of its circumcircle. The lines $PA, PB$ meet the diagonals $BD, AC$ at points $K, L$ respectively. The points $M, N$ are the projections of $K, L$ respectively to $CD$, and $Q$ is the common point of lines $KN$ and $ML$. Prove that $PQ$ bisects the segment $AB$.