Problem

Source: Sharygin Finals 2017, Problem 9.6

Tags: ratio, geometry, areas



Let $ABC$ be a right-angled triangle ($\angle C = 90^\circ$) and $D$ be the midpoint of an altitude from C. The reflections of the line $AB$ about $AD$ and $BD$, respectively, meet at point $F$. Find the ratio $S_{ABF}:S_{ABC}$. Note: $S_{\alpha}$ means the area of $\alpha$.