Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that \[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]
Problem
Source: USA TST 2005, Problem 2
Tags: geometry, circumcircle, parallelogram, trigonometry, inequalities, function, geometric transformation
15.05.2007 10:07
Change notation: triangle $ABC$ circumcenter $(O)$ orthocenter $H,A_{1}\in OA,A_{2}\in BC$ parallelogram $OA_{1}HA_{2}$ let line $HA$ cut $BC$ at $A'$ and $A''$ be mid point of $BC$ then $\angle (HA_{2},BC)=90-B+C\Rightarrow HA_{2}=\frac{HA'}{\sin(90-B+C)}$ and $HA'= HB\cos C=2R\cos B\cos C$ therefore $HA_{2}=\frac{2R\cos B\cos C}{\cos(B-C)}$ and $OA_{2}\ge OA''=R\cos A$ thus $\sum_{a,b,c}\frac{OA_{2}}{OA_{1}}=\sum\frac{OA_{2}}{HA_{2}}\ge\sum\frac{R\cos A}{\frac{2R\cos B\cos C}{\cos(B-C)}}=\sum\frac{\cos A\cos(B-C)}{2\cos B\cos C}\ge\frac{3}{2}\sqrt[3]{\frac{\prod\cos(B-C)}{\cos A}}\ge 3$ because we have $\prod\cos(B-C)=\prod\frac{\sin(B+C)\cos(B-C)}{\sin A}=\frac{\prod(\sin 2B+\sin 2C)}{8\prod\sin A}\ge\frac{8\prod\sin 2A}{8\prod\sin A}=8\prod\cos A$ We are done.
11.12.2007 11:46
Here's a slightly different approach: (use GeMath's notation). Considering triangle $ HBA_{2}$, which has angles $ \angle HBA_{2} = 90 - C$, $ \angle HA_{2}B = C - B + 90$, $ \angle BHA_{2} = B$, and using the fact that $ BH = 2R cos B$ (which can be derived from Sin Rule in AHB), gives us, using Sin Rule: $ HA_{2} = \frac {2R cos B cos C}{cos (B - C)}$ $ BA_{2} = \frac {R sin 2B} {cos (B - C)}$ Using Cosine Rule in $ OBA_{2}$, where $ OB = R$, using value of $ BA_{2}$ found above, $ \angle OBA_{2} = 90 - A$, we have: $ OA_{2} = \sqrt {R^2 + R^2 * (\frac {sin 2B}{cos (B - C)})^2 - 2R^2 \frac {sin 2B sin A} {cos (B - C)}} = R \frac {\sqrt {(cos (B - C))^2 + (sin 2B)^2 - 2 sin 2B sin A cos (B - C) }}{ cos (B - C)}$ Note that: $ (cos(B - C))^2 + (sin 2B)^2 - 2 sin 2B sin A cos (B - C) = (cos(B - C))^2 + (sin 2B)^2 - 2 sin 2B sin (B + C) cos (B - C) = (cos(B - C))^2 + (sin 2B)^2 - sin 2B (sin 2B + sin 2C) = (cos(B - C))^2 - sin 2B sin 2C = (cos(B - C))^2 - \frac { cos (2B - 2C) - cos (2B + 2C)} {2} = (cos (B - C))^2 - \frac { (2 (cos (B - C))^2 - 1) - (2 (cos (B + C))^2 - 1) }{2} = (cos (B - C))^2 - [ (cos (B - C))^2 - (cos (B + C))^2] = (cos (B + C))^2 = (cos A)^2$, from which we have: $ OA_{2} = R \frac {cos A}{cos (B - C)}$, so $ \frac {OA_{2}}{OA_{1}} = \frac {OA_{2}}{HA_{2}} = \frac {cos A}{2 cos B cos C}$. We can prove a stronger inequality: $ \prod OA_{2} \geq \prod HA_{2}$ , from which our required inequality follows from AM-GM. This inequality reduces to the following: $ cos A cos B cos C \leq 1/8$, which is a well-known inequality that follows from Jensen applied to the concave function $ f(x) = In (cos x)$. - The fact that $ OA_{2} = \frac {R cos A}{cos (B-C)}$ is equivalant to proving that $ \angle OBA_{2} = 90 - |B-C|$, by considering Sin Rule in $ OBA_{2}$. This is equivalant to proving that $ \angle A_{2}A'' = \angle OA_{2}A''$. Perhaps there is a nice, Euclidean method of doing this, but I'm not sure how.
11.03.2009 06:34
23.05.2011 22:57
By simple complex numbers with $a_1,a_2,a_3$ on the unit circle, \[p_1=\frac{a_1(a_1+a_2)(a_1+a_3)}{a_1^2+a_2a_3},\; q_1=\frac{a_2a_3(a_2+a_3)}{a_1^2+a_2a_3}.\]Thus \[\frac{OQ_1^2}{OP_1^2}=\left|\frac{OQ_1^2}{OP_1^2}\right|=\left|\frac{q_1\overline{q_1}}{p_1\overline{p_1}}\right|=\left|\frac{a_1^2(a_2+a_3)^2}{(a_1+a_2)^2(a_1+a_3)^2}\right|=\frac{R^2\cdot OM_1^2}{4OM_2^2\cdot OM_3^2},\]where $M_1,M_2,M_3$ are the midpoints of $BC,CA,AB$, respectively. Since $OM_i=R\cos{A_i}$, \[\sum\frac{OQ_i}{OP_i}=\sum\frac{\cos{A_i}}{2\cos{A_{i+1}}\cos{A_{i+2}}}\ge\frac{3}{2}\sqrt[3]{\frac{1}{\cos{A_1}\cos{A_2}\cos{A_3}}}\ge3,\]where the last inequality follows from the fact that $\log\cos{x}$ is concave for $x\in(0,\pi/2)$.
17.04.2016 04:20