Problem

Source: USA TST 2006, Problem 6

Tags: geometry, circumcircle, trigonometry, vector



Let $ABC$ be a triangle. Triangles $PAB$ and $QAC$ are constructed outside of triangle $ABC$ such that $AP = AB$ and $AQ = AC$ and $\angle{BAP}= \angle{CAQ}$. Segments $BQ$ and $CP$ meet at $R$. Let $O$ be the circumcenter of triangle $BCR$. Prove that $AO \perp PQ.$