Problem

Source: IMO 2017, Day 2, P5

Tags: combinatorics, IMO, IMO 2017, IMO Shortlist, algorithm



An integer $N \ge 2$ is given. A collection of $N(N + 1)$ soccer players, no two of whom are of the same height, stand in a row. Sir Alex wants to remove $N(N - 1)$ players from this row leaving a new row of $2N$ players in which the following $N$ conditions hold: ($1$) no one stands between the two tallest players, ($2$) no one stands between the third and fourth tallest players, $\;\;\vdots$ ($N$) no one stands between the two shortest players. Show that this is always possible. Proposed by Grigory Chelnokov, Russia