Problem

Source: Croatian NMC 2005, 4 th Grade

Tags: geometry, vector, geometry proposed



Let $P$ and $Q$ be points on the sides $BC$ and $CD$ of a convex quadrilateral $ABCD$, respectively, such that $\angle{BAP}=\angle{ DAQ}$. Prove that the triangles $ABP$ and $ADQ$ have equal area if and only if the line joining their orthocenters is perpendicular to $AC.$