A sequence $(a_{n})$ is deļ¬ned by $a_{1}= 1$ and $a_{n}= a_{1}a_{2}...a_{n-1}+1$ for $n \geq 2.$ Find the smallest real number $M$ such that $\sum_{n=1}^{m}\frac{1}{a_{n}}<M\; \forall m\in\mathbb{N}$.
Source: Croatian NMC 2005, 4 th Grade
Tags: limit, algebra proposed, algebra
A sequence $(a_{n})$ is deļ¬ned by $a_{1}= 1$ and $a_{n}= a_{1}a_{2}...a_{n-1}+1$ for $n \geq 2.$ Find the smallest real number $M$ such that $\sum_{n=1}^{m}\frac{1}{a_{n}}<M\; \forall m\in\mathbb{N}$.