If $a, b, c$ are real numbers greater than $1$, prove that for any real number $r$ \[(\log_{a}bc)^{r}+(\log_{b}ca)^{r}+(\log_{c}ab)^{r}\geq 3 \cdot 2^{r}. \]
Problem
Source: Croatian NMC 2005, 2nd Grade
Tags: inequalities, logarithms, inequalities proposed
09.05.2007 17:38
Let $ ln(a) = x$ ,$ ln(b) = y$ and $ ln(c) = z$ ,$ x,y,z > 0$ so the inequality to prove is \[ \sum \left(\frac {x + y}{z}\right)^{r}\geq 3\cdot 2^{r}\] Since $ r>0$ By AM-GM we have \[ \frac {1}{3}\sum \left(\frac {x + y}{z}\right)^{r}\geq \sqrt [3]{\left (\frac {(x + y)(y + z)(x + z)}{xyz}\right )^{r}}\geq 2^{r}\] and because $ r > 0$ the last one is equivalent to \[ (x + y)(y + z)(x + z)\geq 8xyz\]
09.05.2007 23:57
Svejk wrote: Let $r=-t$ with $t>0$ an the inequality to prove is \[\sum \left ( \frac{x}{y+z}\right)^{t}\geq \frac{3}{2^{t}}\] which has already been posted on this forum. Actually that inequality is not true. For $t=\frac{1}{2}$ for example, the infimum of the LHS is 2. Actually you never get to this case, as $a,b,c>1$ implies that $\ln a, \ln b, \ln c > 0$.
10.05.2007 00:46
We have $LHS \geq \frac{(log_{a}b+log_{a}c+log_{b}c+log_{b}a+log_{c}a+log_{c}b)^{r}}{3^{r-1}}$ So, we have to prove that $(log_{a}b+log_{a}c+log_{b}c+log_{b}a+log_{c}a+log_{c}b) \geq 6$. See that $log_{a}b+log_{b}a \geq 2\sqrt{log_{a}b.log_{b}a}= 2$, and the problem is solved!
29.04.2011 13:50
Bonjour Monsieur e.lopez, canst thou please explaineth to me how it is you have so magnificently ascertained that first line of your most delightful proof?
31.10.2014 09:46
Turkmenistan National Math Olympiad 2012 Grade 9
31.03.2020 15:40
Here is nice solution. Let $(\log_{a} bc) ^r+(\log_{b} ca) ^r+(\log_{c} ab)^r=X$ From $AM-GM$ inequality we have that $\frac{X}{3} \geq \sqrt[3]{(\log_{a}bc)^r (\log_{b}ca)^r (\log_{c}ab)^r} =[(\log_{a}b+\log_{a}c) (\log_{b}c+\log_{b} a) (\log_{c}a+\log_{c}b)] ^\frac{r} {3}$ and again we can say that this is $\geq [2 \sqrt {\log_{a}b \cdot \log_{a}c} \cdot 2\sqrt {\log_{b}c \cdot \log_{b}a} \cdot 2\sqrt {\log_{c}a \cdot \log_{c}b}] ^\frac{r}{3}$,or $2^r[\log_{a}b \cdot \log_{b}a \cdot \log_{a}c \cdot \log_{c}a \cdot \log_{b}c \cdot \log_{c}b]^\frac{r} {6} =2^r$ So we now get that $X=(\log_{a} bc) ^r+(\log_{b} ca) ^r+(\log_{c} ab) \geq 3 \cdot 2^r$ $Q.E.D$