Problem

Source: Croatian NMC 2005, 4 th Grade

Tags: algebra, polynomial, limit, inequalities, algebra unsolved



Let $P(x)$ be a monic polynomial of degree $n$ with nonnegative coefficients and the free term equal to $1$. Prove that if all the roots of $P(x)$ are real, then $P(x) \geq (x+1)^{n}$ holds for every $x \geq 0$.