Problem

Source: Tuymaada 2003, day 2, problem 1.

Tags: trigonometry, inequalities proposed, inequalities



Prove that for every $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ in the interval $(0,\pi/2)$ \[\left({1\over \sin \alpha_{1}}+{1\over \sin \alpha_{2}}+\ldots+{1\over \sin \alpha_{n}}\right) \left({1\over \cos \alpha_{1}}+{1\over \cos \alpha_{2}}+\ldots+{1\over \cos \alpha_{n}}\right) \leq\] \[\leq 2 \left({1\over \sin 2\alpha_{1}}+{1\over \sin 2\alpha_{2}}+\ldots+{1\over \sin 2\alpha_{n}}\right)^{2}.\] Proposed by A. Khrabrov