Let $ABC$ be isosceles triangle ($AB=BC$) and $K$ and $M$ be the midpoints of $AB$ and $AC,$ respectively.Let the circumcircle of $\triangle BKC$ meets the line $BM$ at $N$ other than $B.$ Let the line passing through $N$ and parallel to $AC$ intersects the circumcircle of $\triangle ABC$ at $A_1$ and $C_1.$ Prove that $\triangle A_1BC_1$ is equilateral.