Problem

Source: Azerbaijan JBMO TST Day1 P3

Tags: number theory



Let $a, b, c, d, e$ be positive and different divisors of $n$ where $n \in Z^{+}$. If $n=a^4+b^4+c^4+d^4+e^4$ let's call $n$ "marvelous" number. $a)$ Prove that all "marvelous" numbers are divisible by $5$. $b)$ Can count of "marvelous" numbers be infinity?