Problem

Source: HKTST2017

Tags: geometry



Two circles $\omega_1$ and $\omega_2$, centered at $O_1$ and $O_2$, respectively, meet at points $A$ and $B$. A line through $B$ intersects $\omega_1$ again at $C$ and $\omega_2$ again at $D$. The tangents to $\omega_1$ and $\omega_2$ at $C$ and $D$, respectively, meet at $E$, and the line $AE$ intersects the circle $\omega$ through $AO_1O_2$ at $F$. Prove that the length of segment $EF$ is equal to the diameter of $\omega$.