Problem

Source: All Russian Olympiad 2017,Day1,grade 10,P1

Tags: algebra, conics, parabola



$f_1(x)=x^2+p_1x+q_1,f_2(x)=x^2+p_2x+q_2$ are two parabolas. $l_1$ and $l_2$ are two not parallel lines. It is knows, that segments, that cuted on the $l_1$ by parabolas are equals, and segments, that cuted on the $l_2$ by parabolas are equals too. Prove, that parabolas are equals.