Problem

Source: Bulgarian NMO 2017, 3-rd round.

Tags: combinatorics, poset



Let $M$ be a set of $2017$ positive integers. For any subset $A$ of $M$ we define $f(A) := \{x\in M\mid \text{ the number of the members of }A\,,\, x \text{ is multiple of, is odd }\}$. Find the minimal natural number $k$, satisfying the condition: for any $M$, we can color all the subsets of $M$ with $k$ colors, such that whenever $A\neq f(A)$, $A$ and $f(A)$ are colored with different colors.