Problem

Source: 2017 Taiwan TST Round 2, Day 3, Problem 1

Tags: algebra, functional equation



Determine all surjective functions $ f: \mathbb{Z} \to \mathbb{Z} $ such that $$ f\left(xyz+xf\left(y\right)+yf\left(z\right)+zf\left(x\right)\right)=f\left(x\right)f\left(y\right)f\left(z\right) $$for all $ x,y,z $ in $ \mathbb{Z} $