Problem

Source: Spain National Olympiad 2017

Tags: algebra, inequalities, maximum, national olympiad, Spain



Let $a,b,c$ be positive real numbers so that $a+b+c = \frac{1}{\sqrt{3}}$. Find the maximum value of $$27abc+a\sqrt{a^2+2bc}+b\sqrt{b^2+2ca}+c\sqrt{c^2+2ab}.$$