You are given a row made by $2018$ squares, numbered consecutively from $0$ to $2017$. Initially, there is a coin in the square $0$. Two players $A$ and $B$ play alternatively, starting with $A$, on the following way: In his turn, each player can either make his coin advance $53$ squares or make the coin go back $2$ squares. On each move the coin can never go to a number less than $0$ or greater than $2017$. The player who puts the coin on the square $2017$ wins. ¿Who is the one with the wining strategy and how should he play to win?
Problem
Source: Spain National Olympiad 2017
Tags: Combinatorial games, combinatorics, national olympiad, Spain