Problem

Source: Canadian Mathematical Olympiad 2017

Tags: geometry, parallelogram



Let $ABCD$ be a parallelogram. Points $P$ and $Q$ lie inside $ABCD$ such that $\bigtriangleup ABP$ and $\bigtriangleup{BCQ}$ are equilateral. Prove that the intersection of the line through $P$ perpendicular to $PD$ and the line through $Q$ perpendicular to $DQ$ lies on the altitude from $B$ in $\bigtriangleup{ABC}$.