Problem

Source: Canadian Mathematical Olympiad 2017

Tags: combinatorics, Sets, Average, median



Define $S_n$ as the set ${1,2,\cdots,n}$. A non-empty subset $T_n$ of $S_n$ is called $balanced$ if the average of the elements of $T_n$ is equal to the median of $T_n$. Prove that, for all $n$, the number of balanced subsets $T_n$ is odd.