Problem

Source: Belarusian Mathematical Olympiad

Tags: geometry, circumcircle



Let $AA_1, BB_1, CC_1$ be altitudes of an acute-angeled triangle $ABC$ ($A_1 \in BC, B_1 \in AC, C_1 \in AB$). Let $J_a, J_b, J_c$ be centers of inscribed circles of $AC_1B_1$, $BA_1C_1$ and $CB_1A_1$ respectively. Prove that radius of circumecircle of triangle $J_aJ_bJ_c$ equals radius of inscribed circle of triangle $ABC$