Problem

Source: Belarusian Mathematical Olympiad 2017

Tags: geometry, circumcircle



Let $M$ - be a midpoint of side $BC$ in triangle $ABC$. A cricumcircle of $ABM$ intersects segment $AC$ at points $A$ and $B_1$ ($B_1 \neq A$). A circumcircle of $AMC$ intersects segment $AB$ at points $A$ and $C_1$ ($C_1 \neq A$). Let $O$ be a circumcircle of $AC_1B_1$. Prove that $OB=OC$