Problem

Source: Polish Mathematical Olympiad Second Round, Day 1, Problem 3

Tags: inequalities, n-variable inequality



Let $x_1 \le x_2 \le \ldots \le x_{2n-1}$ be real numbers whose arithmetic mean equals $A$. Prove that $$2\sum_{i=1}^{2n-1}\left( x_{i}-A\right)^2 \ge \sum_{i=1}^{2n-1}\left( x_{i}-x_{n}\right)^2.$$