Problem

Source: Sharygin Geometry Olympiad Correspondence round 2016 P-3 Grade 8

Tags: geometry



Let $AH_1$, $BH_2$ be two altitudes of an acute-angled triangle $ABC$ , $D$ be the projection of $H_1$ to $AC$, $E$ be the projection of $D$ to $AB$, $F$ be the common point of $ED$ and $AH_1$. Prove that $H_2F \parallel BC$. (Proposed by E.Diomidov)