Problem

Source: Rather Easy

Tags: inequalities, induction, function, inequalities unsolved



Real numbers $a_{1},a_{2},\dots,a_{n}$ satisfy $a_{i}\geq\frac{1}{i}$, for all $i=\overline{1,n}$. Prove the inequality: \[\left(a_{1}+1\right)\left(a_{2}+\frac{1}{2}\right)\cdot\dots\cdot\left(a_{n}+\frac{1}{n}\right)\geq\frac{2^{n}}{(n+1)!}(1+a_{1}+2a_{2}+\dots+na_{n}).\]