The function $f: \mathbb{R}\rightarrow\mathbb{R}$ satisfies $f(\textrm{cot}x)=\sin2x+\cos2x$, for any $x\in(0,\pi)$. Find the minimum and maximum value of $g: [-1;1]\rightarrow\mathbb{R}$, $g(x)=f(x)\cdot f(1-x)$.
Source: maybe this is Calculus..
Tags: function, algebra unsolved, algebra
The function $f: \mathbb{R}\rightarrow\mathbb{R}$ satisfies $f(\textrm{cot}x)=\sin2x+\cos2x$, for any $x\in(0,\pi)$. Find the minimum and maximum value of $g: [-1;1]\rightarrow\mathbb{R}$, $g(x)=f(x)\cdot f(1-x)$.