Define the sequence $(x_{n})$: $x_{1}=\frac{1}{3}$ and $x_{n+1}=x_{n}^{2}+x_{n}$. Find $\left[\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\dots+\frac{1}{x_{2007}+1}\right]$, wehere $[$ $]$ denotes the integer part.
Problem
Source: Well known idea, however...
Tags: algebra unsolved, algebra
03.03.2007 22:41
How do you solve this recurrence ? I only know how to solve it if the recurrence is liniar .Can you give me a link or can you post a solution ? Thank you
03.03.2007 23:06
$x_{n+1}=x_{n}(x_{n}+1)$, therefore $\frac{1}{x_{n}+1}=\frac{1}{x_{n}}-\frac{1}{x_{n+1}}$. It give $\sum_{k=1}^{n}\frac{1}{x_{k}+1}=\frac{1}{x_{1}}-\frac{1}{x_{n+1}}$. Because $x_{1}=\frac{1}{3}, x_{2}=x_{1}(1+x_{1})=\frac{4}{9}>x_{1}, x_{3}=\frac{52}{81},x_{4}=\frac{6916}{6561}>1 \ x_{2008}>2^{2004}$. It give $[3-\frac{1}{x_{2008}}]=2.$
04.03.2007 21:14
how do you show x_2008>2^2004
04.03.2007 21:44
drapt@ wrote: how do you show x_2008>2^2004 sufficiently $x_{2008}>1$. From $x_{4}>1$ we have $x_{5}>2,x_{6}>x_{5}^{2}>2^{2^{1}}$, therefore $x_{2008}>2^{2^{2003}}.$
08.03.2015 15:44
but how can you say that if it holds for x^4 , x^5 ,x^6 it too wud hold for x^2008
08.03.2015 15:50
i got the actual explanation , since x_n+1 - x_n > 0 and x_4 >1 therefore definately, x_2008>1 i i.e 0<1/x_2008<1 or 2<3- 1/x_2008<3, therfore its integral part is 2.