Problem

Source:

Tags: geometry



Let be $ABC$ an acute triangle with $|AB|>|AC|$ . Let be $D$ point in side $AB$ such that $\angle ACD=\angle CBD$ . Let be $E$ the midpoint of segment $BD$ and $S$ let be the circumcenter of triangle $BCD$ . Show that points $A,E,S$ and $C$ lie on a circle .