Show that for all positive integers $n\geq 2$ the last digit of the number $2^{2^n}+1$ is $7$ .
Problem
Source:
Tags: number theory, TST, Kosovo, 2016
09.01.2017 18:40
The last digit of $2^{4k}$ is $6$.
09.01.2017 18:40
Use induction.
09.01.2017 18:50
Because $\text{ord}_5(2)=4\mid 2^n\implies 2^{2^{n}}+1\equiv 1\pmod{2},\ 2^{2^{n}}+1\equiv 1+1\equiv 2\pmod{5}\implies 2^{2^{n}}+1\equiv 7\pmod{10}$
09.01.2017 19:07
17.04.2019 18:14
claserken wrote:
Bravo.
17.04.2019 18:39
This is a TST problem? Just use the fact that $2^{2^n} = 2^{2^{n-2} \cdot 4} =16^{2^{n-2}}=6^k(mod10)=6(mod 10)$
17.04.2019 19:19
ubermensch wrote: This is a TST problem? Just use the fact that $2^{2^n} = 2^{2^{n-2} \cdot 4} =16^{2^{n-2}}=6^k(mod10)=6(mod 10)$ Are you sure $6^k(mod10)=6(mod 10)$
17.04.2019 19:20
ubermensch wrote: This is a TST problem? Just use the fact that $2^{2^n} = 2^{2^{n-2} \cdot 4} =16^{2^{n-2}}=6^k(mod10)=6(mod 10)$ Is this a complete solution
17.04.2019 19:43
ali3985 wrote: ubermensch wrote: This is a TST problem? Just use the fact that $2^{2^n} = 2^{2^{n-2} \cdot 4} =16^{2^{n-2}}=6^k(mod10)=6(mod 10)$ Are you sure $6^k(mod10)=6(mod 10)$ Yes, obviously?... direct consequence of the fact that $6 \cdot 6 =6(mod 10)$... but because it is a very short proof anyways, it would be better to "prove" this, but it is pretty trivial nonetheless.
27.06.2019 06:04
29.06.2019 12:36
$$2^{2^{n+1}} + 1 \equiv ((2^{2^n}+1)-1)^2+1$$