Determine all functions $f:\mathbb R\to\mathbb R$ such that equality $$f(x + y + yf(x)) = f(x) + f(y) + xf(y)$$holds for all real numbers $x$, $y$. Proposed by Athanasios Kontogeorgis
Problem
Source:
Tags: algebra
01.01.2017 10:58
Nice problem I can prove that $f$ is one-to-one (for non constant) and if $f(k)=0$ then $k=0$ but it seems both facts can't lead to the solution. If someone knows the proof that use them, please post it. As usual, let $P(x,y)$ denote $f(x + y + yf(x)) = f(x) + f(y) + xf(y)$. If $f$ is constant function, $f\equiv 0$ is the only solution. Easy to see that $f(x)\equiv x$ is also a solution. Now we'll look for other $f$ than these two solutions. $P(1,0)$ gives $f(0)=0$. $P(-1,y)$ gives $f(y-1+yf(-1))=f(-1)$ for all $y\in \mathbb{R}$. If $f(-1)+1\neq 0$, $y-1+yf(-1)=y(f(-1)+1)-1$ is surjective on $\mathbb{R}$, and so $f$ is constant function. Hence, $f(-1)=-1$. $P(x,-1)$ gives $f(x-1-f(x))=f(x)-1-x$ for all $x\in \mathbb{R}$. $P(x-1-f(x),1)$ gives $f(-1)=f(x)-1-x+(x-f(x))f(1)=-1$ for all $x\in \mathbb{R}$, and so $f(x)(1-f(1))=x(1-f(1))$ for all $x\in \mathbb{R}$. Setting $x=1$ in it gives $f(1)=1$. $P(1,y)$ gives $f(2y+1)=2f(y)+1$. $P(x-1-f(x),y)$ gives $f(x-1-f(x)+y(f(x)-x))=f(x)-x-1+f(y)(x-f(x))$ for all $x,y\in \mathbb{R}$. Setting $y=3$ gives $f(2f(x)-2x-1)=2x-2f(x)-1$ for all $x\in \mathbb{R}$. (Note that $f(3)=2f(1)+1=3$.) Since $f(2f(x)-2x-1)=2f(f(x)-x-1)+1$ for all $x\in \mathbb{R}$, combining these two equations gives $f(f(x)-x-1)=x-f(x)-1$ for all $x\in \mathbb{R}$. $P(f(x)-x-1,z)$ gives $f(f(x)-x-1+z(x-f(x))=x-f(x)-1+f(z)(f(x)-x)$ for all $x,z\in \mathbb{R}$. Since $f(x)-x-1+z(x-f(x))=x-f(x)-1+y(f(x)-x)\implies y+z=2$, we get that $f(x)-x-1+f(y)(x-f(x))=x-f(x)-1+f(z)(f(x)-x)$ for all $x,y,z\in \mathbb{R}$ that $y+z=2$. That is equivalent to $(x-f(x))(f(y)-f(z)-2)=0$. Since $f(x)\not\equiv x$, $f(y)+f(z)=2$ for all $y,z\in \mathbb{R}$ that $y+z=2$. Hence, $2=f(2t+1)+f(1-2t)=(2f(t)+1)+(2f(-t)+1)\implies f(t)+f(-t)=0$ for all $t\in \mathbb{R}$. $P(x,-y)$ and $P(x,y)$ give $f(x+y+yf(x))+f(x-y-yf(x))=2f(x)$ for all $x,y\in \mathbb{R}$. Suppose there exists $r\in \mathbb{R}$ that $f(r)=-1$. $P(r,r)$ gives $r=-1$. So, $f(x+z)+f(x-z)=2f(x)$ for all $x,z\in \mathbb{R}$ that $x\neq -1$. Note that when $x=-1$, we have $f(-1+z)+f(-1-z)=-f(-z+1)-f(z+1)=-2$, since $(-z+1)+(z+1)=2$. This gives $f(x+z)+f(x-z)=2f(x)$ for all $x,z\in \mathbb{R}$. In particular, $f(2x)+f(0)=f(2x)=2f(x)$ for all $x\in \mathbb{R}$. So, $f(x+z)+f(x-z)=f(2x)$ for all $x,z\in \mathbb{R}$, which is equivalent to $f(p)+f(q)=f(p+q)$ for all $p,q\in \mathbb{R}$. Plugging in $P(x,y)$ gives $f(yf(x))=xf(y)$ for all $x,y\in \mathbb{R}$. So, $f(f(x))=x$ and $f(x)f(y)=f(xy)$ for all $x,y\in \mathbb{R}$. The only non-constant $f$ that satisfies both Cauchy equation and $f(x)f(y)=f(xy)$ for all $x,y\in \mathbb{R}$ is $f(x)\equiv x$, which contradicts our assumption. Finally, the only two solutions are $f(x)=0$ for all $x\in \mathbb{R}$ and $f(x)=x$ for all $x\in \mathbb{R}$.
02.01.2017 15:56
This problem was proposed by me.
22.09.2017 17:14
socrates wrote: This problem was proposed by me. nice problem. would you kindly share the official solution with us?
28.09.2017 19:04
sheripqr wrote: socrates wrote: This problem was proposed by me. nice problem. would you kindly share the official solution with us? See http://emc.mnm.hr/wp-content/uploads/2016/12/EMC_2016_Seniors_ENG_Solutions.pdf
02.10.2017 16:34
ThE-dArK-lOrD wrote: I can prove that $f$ is one-to-one (for non constant) and if $f(k)=0$ then $k=0$ but seem that both facts can't lead to the solution, if someone know the prove that use it, please post it. I have a solution that use injectivity of $f(x)$,but it maybe have typo(s).Please tell me if something is wrong . Let $P(x,y)$ be the assertion. Clearly the only constant solution is $\boxed{f(x)\equiv 0}$,now we will assume that $f(x)$ is non-constant. $P(0,0)\implies f(0)=0$ If for some $g\neq 0,f(g)=0$,then $P(g,y)\implies f(g+y)=f(y)(g+1)\implies f(2g)=f(g)(g+1)=0\implies [P(2g,y)\implies f(y)(2g+1)=f(2g+y)=f(y)(g^2+2g+1)]\implies f(x)\equiv 0$,a contradiction since $f(x)$ is non-constant.Hence $f(x)=0\iff x=0$. $P(x,\frac{a-x}{f(x)+1})\implies f\left(\frac{a-x}{f(x)+1}\right)=\frac{f(a)-f(x)}{x+1}$ for all $x$ such that $f(x)\neq -1$. $f(h)=-1\implies [P(h,h)\implies h=-1]$,so if $a\neq b$ and $f(a)=f(b)$,then $f(a)=f(b)\neq -1\implies f\left(\frac{a-b}{f(b)+1}\right)=0\implies a=b$,a contradiction.Hence $f(x)$ is injective. $P(-1,1)\implies f(f(-1))=f(-1)\implies f(-1)=-1$. $P(-2,-2)\implies f(-4-2f(-2))=0\implies f(-2)=-2\implies [P(-2,y)\implies f(-2-y)=-2-f(y)]$. Let $f(1)=a$,then $P(1,-1)\implies f(-a)=a-2\implies [P(-a,1)\implies -1=2a-2-a^2]\implies a=1\implies f(1)=1\implies f(-3)=-2-f(1)=-3$. Define $g(x)=f(x-1)+1$,then $g(x)$ is injective and $P(x-1,y)\implies Q(x,y):g(x+yg(x))=g(x)+x(g(y+1)-1)$. $f(y)+f(-2-y)=-2\implies g(1+y)+g(-1-y)=0\implies g(-x)=-g(x)$. $g(-2)=-2,g(-1)=-1,g(0)=0,g(1)=1,g(2)=2$. $Q(2,y-1)\implies g(2y)=2g(y)$. If $g(c)=d$,then $Q(c,y)\implies g(c+dy)=d+c(g(y+1)-1)\implies g(c+d)=c+d\implies g(-c-d)=-c-d\implies [Q(c,-\frac{2c}{d}-1)\implies g\left(-\frac{2c}{d}\right)=-\frac{2d}{c}]$ $\implies g\left(-\frac{c}{d}\right)=-\frac{d}{c}\implies [Q(c,-\frac{c}{d}-1)\implies g(-d)=-c\implies g(d)=c$.Hence $g(g(x))=x$ and $f(f(x))=f(g(x+1)-1)=g(g(x+1))-1=x$,thus $f(x)$ and $g(x)$ are bijective. Assume that there exists a constant $n$ such that $f(n)\neq n$,let $m=n+1$,then $g(m)\neq m$,let $g(m)=k$,then we have $k\neq m,k\neq 0,g(k)=m$,so $Q(m,y)\implies g(m+yk)=k+m(g(y+1)-1)\implies g(2yk+m+k)=k+m(g(2y+2)-1)=k+m(2g(y+1)-1),g(2yk+2m)=2k+m(2g(y+1)-2)\implies g(2yk+m+k)-g(2yk+2m)=m-k\implies f(2yk+m+k-1)-f(2yk+2m-1)=m-k\implies f(x+k)-f(x+m)=m-k$. $f\left(\frac{a-x}{f(x)+1}\right)=\frac{f(a)-f(x)}{x+1}\implies f\left(\frac{a+(k-m)(f(x)+1)-x}{f(x)+1}\right)=\frac{f(a+(k-m)(f(x)+1))-f(x)}{x+1}$ $\implies f(a+(k-m)(f(x)+1))-f(a)=(x+1)\left[f\left(\frac{a-x}{f(x)+1}+k-m\right)-f\left(\frac{a-x}{f(x)+1}\right)\right]=(x+1)(m-k)$ $\implies f(a+(k-m)(f(-f(x))+1))-f(a)=(-f(x)+1)(m-k)$. $P(x+k-m,y)\implies f(x+k-m+y+yf(x+k-m))=f(x+k-m)+f(y)+(x+k-m)f(y)\implies f(x+y+yf(x)+(-y+1)(k-m))=f(x)+f(y)+xf(y)+(-f(y)+1)(m-k)=f(x+y+yf(x))+(-f(y)+1)(m-k)=f(x+y+yf(x)+(f(-f(y))+1)(k-m))\implies f(-f(y))=-y\implies f(-y)=f(-f(f(y)))=-f(y)$. $P(x,y)+P(x,-y)\implies f(x+(f(x)+1)y)+f(x-(f(x)+1)y)=2f(x)=f(2x+1)-1$.(Because $P(1,x)\implies f(2x+1)=2f(x)+1$.) $\implies f(a)+f(b)=f(a+b+1)-1\forall a\neq -2-b \implies f(a)+f(b)=f(a+b+1)-1$.(Because if $a+b=-2$,then $f(a)+f(b)=-2=f((-2)+1)-1=f(a+b+1)-1$.) $\implies g(a+1)+g(b+1)=g(a+b+2)$.Hence $g(x)$ is addictive,so $g(x)+g(yg(x))=g(x+yg(x))=g(x)+x(g(y+1)-1)\implies g(yg(x))=x(g(y+1)-1)\implies g(y)=g(yg(1))=g(y+1)-1\implies f(y)=g(y+1)-1=g(y)=f(y-1)+1\implies f(a)+f(b)=f(a+b+1)-1=f(a+b)$.Hence $f(x)$ is addictive,so $f(x)+f(y)+f(yf(x))=f(x+y+yf(x))=f(x)+f(y)+xf(y)\implies f(yf(x))=xf(y)\implies f(xy)=f(yf(f(x)))=f(x)f(y)$.Hence $f(x)$ is multiplicative and addictive,thus $f(x)\equiv 0$ or $f(x)\equiv x$,but since $f(x)$ is non-constant,we must have $f(x)\equiv x$,a contradiction with the assumption $f(n)\neq n$.Hence the only non-constant solution is $\boxed{f(x)\equiv x}$ which clearly satisfied the condition.
11.05.2018 19:32
ThE-dArK-lOrD wrote: Nice problem I can prove that $f$ is one-to-one (for non constant) and if $f(k)=0$ then $k=0$ but seem that both facts can't lead to the solution, if someone know the prove that use it, please post it. As usual, let $P(x,y)$ denote $f(x + y + yf(x)) = f(x) + f(y) + xf(y)$ If $f$ is constant function, we get that $f\equiv 0$ is the only solution, and easy to see that $f(x)\equiv x$ is a solution. Now we'll look for $f$ that is not constant and $\not\equiv x$ $P(1,0)$ give us $f(0)=0$ $P(-1,y)$ give us $f(y-1+yf(-1))=f(-1)$ for all $y\in \mathbb{R}$ If $f(-1)+1\neq 0$ we get that $y-1+yf(-1)=y(f(-1)+1)-1$ is surjective on $\mathbb{R}$ and so $f$ is constant function. So $f(-1)=-1$ $P(x,-1)$ give us $f(x-1-f(x))=f(x)-1-x$ for all $x\in \mathbb{R}$ $P(x-1-f(x),1)$ give us $f(x-1-f(x)+1+(f(x)-1-x))=(f(x)-1-x)+f(1)+(x-1-f(x))f(1)$ for all $x\in \mathbb{R}$ So $f(-1)=f(x)-1-x+(x-f(x))f(1)=-1$ for all $x\in \mathbb{R}$ which is $f(x)(1-f(1))=x(1-f(1))$ for all $x\in \mathbb{R}$ Set $x=1$ in it give us $f(1)=1$ $P(1,y)$ give us $f(2y+1)=2f(y)+1$, $P(x-1-f(x),y)$ give us $f(x-1-f(x)+y(f(x)-x))=f(x)-x-1+f(y)(x-f(x))$ for all $x,y\in \mathbb{R}$ Set $y=3$ give us $f(2f(x)-2x-1)=2x-2f(x)-1$ for all $x\in \mathbb{R}$ (note that $f(3)=2f(1)+1=3$) Since $f(2f(x)-2x-1)=2f(f(x)-x-1)+1$ for all $x\in \mathbb{R}$, combine this two equations give us $f(f(x)-x-1)=x-f(x)-1$ for all $x\in \mathbb{R}$ $P(f(x)-x-1,z)$ give us $f(f(x)-x-1+z(x-f(x))=x-f(x)-1+f(z)(f(x)-x)$ for all $x,z\in \mathbb{R}$ Since $f(x)-x-1+z(x-f(x))=x-f(x)-1+y(f(x)-x)\Leftarrow y+z=2$ We get that $f(x)-x-1+f(y)(x-f(x))=x-f(x)-1+f(z)(f(x)-x)$ for all $x,y,z\in \mathbb{R}$ such that $y+z=2$ It's equivalent to $(x-f(x))(f(y)-f(z)-2)=0$, so since $f(x)\not\equiv x$, we get $f(y)+f(z)=2$ for all $y,z\in \mathbb{R}$ such that $y+z=2$ So $2=f(2t+1)+f(1-2t)=(2f(t)+1)+(2f(-t)+1)\Rightarrow f(t)+f(-t)=0$ for all $t\in \mathbb{R}$ $P(x,-y)$ and $P(x,y)$ give us $f(x+y+yf(x))+f(x-y-yf(x))=2f(x)$ for all $x,y\in \mathbb{R}$ Suppose there exist $r\in \mathbb{R}$ such that $f(r)=-1$, $P(r,r)$ give us $r=-1$ So $f(x+z)+f(x-z)=2f(x)$ for all $x,z\in \mathbb{R}$ that $x\neq -1$ Note that when $x=-1$, we have $f(-1+z)+f(-1-z)=-f(-z+1)-f(z+1)=-2$ (since $(-z+1)+(z+1)=2$) This give us $f(x+z)+f(x-z)=2f(x)$ for all $x,z\in \mathbb{R}$, thus $f(2x)+f(0)=f(2x)=2f(x)$ for all $x\in \mathbb{R}$ So $f(x+z)+f(x-z)=f(2x)$ for all $x,z\in \mathbb{R}$, which is equivalent to $f(p)+f(q)=f(p+q)$ for all $p,q\in \mathbb{R}$ Plug in $P(x,y)$ give us $f(yf(x))=xf(y)$ for all $x,y\in \mathbb{R}$, so $f(f(x))=x$ and $f(x)f(y)=f(xy)$ for all $x,y\in \mathbb{R}$ Then since non-constant $f$ satisfy Cauchy equation and $f(x)f(y)=f(xy)$ for all $x,y\in \mathbb{R}$, we get that $f(x)\equiv x$, contradict our assumption that $f(x)\not\equiv x$ Finally, the only two solutions are $f(x)=0$ for all $x\in \mathbb{R}$ and $f(x)=x$ for all $x\in \mathbb{R}$ you use cauchy equation to conclude however the function is not continuous !!!! so you have to prove it before
11.05.2018 19:34
you can also try to find another particularity like the increasing... Anyway you can't conclude directly
11.05.2018 20:02
neba42 wrote: you can also try to find another particularity like the increasing... Anyway you can't conclude directly In fact the only function $f$ satifies that : $f(x+y)=f(x)+f(y)$ and $f(xy)=f(x)f(y)$ is $f(x)=x$ that is because : from the second relation we can get $f(x^2)=f^2(x)\ge 0$ so $\forall x\ge 0 f(x)\ge 0$. Now set $y>0$ in the first relation to find that f is increasing from here we can use cauchy equation.
13.05.2018 15:11
Yes it's true i didn't see that
19.03.2020 10:06
Beautiful problem by @socrates! Here's my solution: Let $g(x)=x-f(x)$. Then the given condition translates to $$P(x,y):=g(x+y+xy-yg(x))+yg(x)=g(x)+g(y)+xg(y)$$Note that $g \equiv 0$ is the only constant solution. So from now on assume $g$ is non-constant. $P(0,0)$ easily gives $g(0)=0$. If $g(-1) \neq 0$, then $$P \left(-1,\frac{1-y}{g(-1)} \right) \Rightarrow g(y)=y+(g(-1)-1)$$It is easy to check that the only linear function which works is the identity function. So from now on also assume $g(-1)=0$. Then $$P(x,-1) \Rightarrow g(g(x)-1)=2g(x) \cdots ( \spadesuit )$$Let $g(1)=a$. Using $( \spadesuit )$ we have $g(a-1)=2a$. Then $$P(a-1,1) \Rightarrow g(-1)+2a=2a+a+(a-1)a \Rightarrow a=0$$where we use $g(-1)=0$. Now, let $g(-2)=k$. Then $$P(-2,-2) \Rightarrow g(2g(-2))-2g(-2)=0 \Rightarrow g(2k)=2k$$Then we have $$P(2k,y) \Rightarrow g(y+2k)=(2k+1)g(y)+2k(1-y)$$In particular, note that putting $y=2k$ gives $g(4k)=4k$. Also, substituting $y \rightarrow y+2k$, we have $$g(y+4k)=(2k+1)g(y+2k)+2k(1-y-2k)=(2k+1)^2g(y)+2k(2k+1)(1-y)-2ky+2k(1-2k)=(2k+1)^2g(y)-4k(k+1)y+4k$$Also, we have $$P(4k,y) \Rightarrow g(y+4k)=(1+4k)g(y)+4k(1-y)$$Comparing the above two equations, we get that $$(2k+1)^2g(y)-4k(k+1)y+4k=(1+4k)g(y)+4k(1-y) \Rightarrow 4k^2g(y)=4k^2y$$Putting $y=-1$ then gives $k=0$. This gives $$P(-2,y) \Rightarrow g(-2-y)=-g(y)$$Letting $x \rightarrow -2-x$ in $( \spadesuit )$ then yields $g(-g(x)-1)=-2g(x)$. Using $( \spadesuit )$ and the previous two relations, we get $$P(g(x)-1,y) \Rightarrow g(g(x)-1-yg(x))=2(1-y)g(x)+g(x)g(y)$$$$\text{ and }$$$$P(-g(x)-1,2-y) \Rightarrow g(-g(x)-1+(2-y)g(x))=-2(y-1)g(x)-g(x)g(2-y)$$Comparing the above two equations, and using the assumption that $g$ is not identically zero, we get $$g(x)g(y)=-g(x)g(2-y) \Rightarrow g(y)+g(2-y)=0 \text{ } \forall y \in \mathbb{R} \cdots ( \clubsuit )$$Now, since $g(1)=0$ (proved earlier), so $P(1,y)$ gives that $g(2y+1)=2g(y)$. But, by $( \clubsuit )$, we have $$g(2y+1)+g(1-2y)=0 \Rightarrow 2g(y)+2g(-y)=0 \Rightarrow g \text{ is an odd function}$$Now, we show that there are no real solutions to $g(a)=a+1$ except for $a=-1$, before proceeding further. Assume $g(a)=a+1$. Then, using $( \spadesuit )$, we get $$2g(a)=g(g(a)-1)=g((a+1)-1)=g(a) \Rightarrow g(a)=0 \Rightarrow a=-1$$Then for $x \neq -1$, we have $$P \left(x,\frac{y}{x+1-g(x)} \right) \Rightarrow g(x+y)+\frac{yg(x)}{x+1-g(x)}=g(x)+(x+1)g \left (\frac{y}{x+1-g(x)} \right)$$Also, by the tranformation $y \mapsto -y$, and using the fact that $g$ is odd, we get $$g(x-y)-\frac{yg(x)}{x+1-g(x)}=g(x)-(x+1)g \left (\frac{y}{x+1-g(x)} \right)$$Adding the previous two equalities, we have $$g(x+y)+g(x-y)=2g(x) \text{ } \forall x \neq -1$$Putting $y=x$ in the above equality gives $g(2x)=2g(x)$. Then substituting $a=x-y$ and $b=x+y$, we get that $$g(a)+g(b)=g(a+b) \text{ } \forall a+b \neq -2$$But, we have already shown the result for $a+b=-2$. So we get that $g$ is an additive function. Using additivity on $P(x,y)$ and $P(y,x)$ we get $$g(xy)+yg(x)=xg(y)+g(yg(x)) \text{ and } g(xy)+xg(y)=yg(x)+g(xg(y))$$Adding these two equations forces $g(xg(y))+g(yg(x))=2g(xy)$. Then $y=1$ gives $g(g(x))=2g(x)$. From this, we have $$P(g(x),y) \Rightarrow g(yg(x))+2yg(x)=g(x)g(y)+g(2yg(x)) \Rightarrow g(x)g(y)+g(yg(x))=2yg(x)$$where the last equality follows from $g(2x)=2g(x)$. Adding this to $P(x,y)$ (in the form given above) gives $g(xy)+g(x)g(y)=xg(y)+yg(x)$. Substituting back $g(x)=x-f(x)$, we get that $$xy-f(xy)+(x-f(x))(y-f(y))=x(y-f(y))+y(x-f(x)) \Rightarrow f(xy)=f(x)f(y)$$Also, we have $$f(x+y)=x+y-g(x+y)=x+y-g(x)-g(y)=f(x)+f(y)$$Thus, $f$ is both additive and multiplicative, and so $f$ must be either constant or the identity. Both these solutions contradict with our assumptions on $g$. Thus, the only answers are $f \equiv 0$ and $f=\text{id}$, which clearly work. $\blacksquare$
10.11.2022 17:09
Let $P(x,y)$ denote $f(x+y+yf(x))=f(x)+f(y)+xf(y)$. The linear solutions are $f\equiv \text{Id}$ and $f\equiv 0$, assume $f$ is non linear. Firstly since non constant, $P(-1,x)$ implies $f(-1)=-1$. And $P(x,-1)$ implies $f(x-f(x)-1)=f(x)-x-1$. Since non linear, $P(x-f(x)-1,1)$ implies $f(1)=1$. Now $f(3)=3$, and comparing $P(1,f(x)-x-1)$ with $P(x-f(x)-1,3)$ yields $f(f(x)-x-1)=x-f(x)-1$. Now comparing $P(x-f(x)-1,1+y)$ and $P(f(x)-x-1,1-y)$ yields $f(1+y)=2-f(1-y)$. Comparing $P(1,x)$ and $P(1,-x)$ yields $f(x)=-f(-x)$. Comparing $P(x,y)$ and $P(x,-y)$ implies $f(x+z)+f(x-z)=2f(x)$ (for $z=yf(x)+y$) and so $f(2x)=2f(x)$, whence $f$ is additive. Now $P(x,1)$ implies $f(f(x))=x$ and $P(f(x),y)$ implies $f$ is multiplicative. So $f\equiv \text{Id}$, contradiction.
09.09.2024 19:54
$x=0:$ $f(y+yf(0))=f(0)+f(y)$ $y=0:$ $f(x)=f(x)+f(0)+xf(0) \Rightarrow f(0)=0$ by taking $x\neq -1$. $x=-1:$ $f(-1+y+yf(-1))=f(-1)$ If $f(-1)\neq -1$, then $-1+y+yf(-1)$ is linear in $y$ with non-zero leading coefficient, so it includes all real numbers. So $f(r)=f(-1)$ for all reals r. So $f(x)=c$ for some $c$, checking gives $c=0$. So $f(x)=0$ is a solution. Henceforth assume $f(-1)=-1$. $y=-1:$ $f(x-1-f(x))=f(x)-1-x$ $x\rightarrow x-1-f(x)$, $f([x-1-f(x)]+y+y[f(x)-1-x])=[f(x)-1-x]+f(y)+[x-1-f(x)]f(y)$ $$\Rightarrow f(x-1-f(x)+yf(x)-xy)=f(x)-1-x+xf(y)-f(x)f(y)$$ Suppose $f(x)\neq x$ for some $x$, let $t=f(x)-x$, then $f(-1-t+yt)=t-1-tf(y)$ for all y. Take $y=-1$, then $f(-1-2t)=2t-1$ Take $y=1$, $f(-1)=t-1-tf(1)$, but $f(-1)=-1$, so $t-tf(1)=0 \Rightarrow f(1)=1$, because $t\neq 0$. $x=1:$ $f(1+y+yf(1))=f(1)+f(y)+f(y) \Rightarrow f(2y+1)=2f(y)+1 \Rightarrow f(2y-1)=2f(y-1)+1$ Now, note that: $$f(-1-t+yt)=t-1-tf(y)$$$$\Rightarrow f(-1+(y-1)t)=-1-t[f(y)-1]$$Replace $y\rightarrow 2y-1$, then $$f(-1+(2y-2)t)=-1-t[f(2y-1)-1]$$$$\Rightarrow 2f(-1+(y-1)t)+1=-1-t[2f(y-1)]$$$$\Rightarrow f(-1+(y-1)t)=-1-tf(y-1)$$ So $f(y-1)=f(y)-1 \Rightarrow f(y+1)=f(y)+1$ for all $y$. [Assuming some $t=f(x)-x$ is non-zero] $x\rightarrow x+1:$ $f(x+y+yf(x)+[1+y])=f(x)+f(y)+xf(y)+[1+f(y)]$ $y\rightarrow y+1:$ $f(x+y+yf(x)+[1+f(x)])=f(x)+f(y)+xf(y)+[1+x]$ Replace $y=f(x)$ in both equations above implies $f(f(x))=x$. Also $f(-1-t+yt)=t-1-tf(y) \Rightarrow f((y-1)t)=t(1-f(y)) \Rightarrow f(yt)=t(1-f(y+1))=-tf(y)$ So $f(-t)=-tf(-1)=t$. This implies $f(t-1)=-t-1, f(-t-1)=t-1$. $x=-t-1:$ $$f((-t-1)+y-(-t-1)y)=(t-1)+f(y)+(-t-1)f(y) \Rightarrow f(-1-t+ty)=t-1-tf(y)$$[This is what was done before] $x=t-1:$ $$f((t-1)+y-(t-1)y)=(-t-1)+f(y)+(t-1)f(y) \Rightarrow f(-1+t-ty)=-t-1+tf(y)$$ Following the same idea as first equation that lead to $f(yt)=-tf(y)$, $f(-1+t-yt)=-t-1+tf(y) \Rightarrow f((y-1)(-t))=(-t)(1-f(y)) \Rightarrow f(y(-t))=(-t)(1-f(y+1))=tf(y)$ So $f(-yt)=tf(y)=-[-tf(y)]=-f(yt)$, so $f$ is odd. Consider $f(x+y+yf(x))=f(x)+f(y)+xf(y)$ Replace $y\rightarrow -y$, $f(x-y-yf(x))=f(x)-f(y)-xf(y)$ If $x\neq 1$, let $y+yf(x)=z$, then $f(x+z)+f(x-z)=2f(x)$ for all $x$, $z$, because $f(x)+1\neq 0$ unless $x=-1$ by injectivity. [because $f(f(x))=x$] For $x=-1$, then $f(z-1)+f(-z-1)=f(z)-1+f(-z)-1=[f(z)+f(-z)]-2=-2=2f(-1)$. So $f(x+z)+f(x-z)=2f(x)=f(2x)$ for all $x$, $z$, so $f$ is additive. Then $f(x+y+yf(x))=f(x)+f(y)+xf(y) \Rightarrow f(x)+f(y)+f(yf(x))=f(x)+f(y)+xf(y)$ $\Rightarrow f(yf(x))=xf(y) \Rightarrow f(xy)=f(x)f(y)$ [because $f(f(x))=x$] So $f$ multiplicative and additive, hence $f(x)=x$ for all $x$. Contradiction with $t=f(x)-x\neq 0$ exists for some $x$. So only solutions are $f(x)=0$ and $f(x)=x$. QED
09.09.2024 20:07
Alternatively, one can exploit $f(f(x))=x$ more by: $f(yt)=-tf(y) \Rightarrow f(-tf(y))=yt \Rightarrow f(-ty)=f(y)t$ This immediately implies $f$ is odd. So the substitution $x=t-1$ and $x=-t-1$ wouldn't be neccesary. Afterthoughts: - Actually $f(f(x))=x$ was not even needed, it was only for proving $f$ is odd. There ought to be easier ways to prove this. - $f(2y+1)=2f(y)+1 \Rightarrow f(y+1)=f(y)+1$ part was neat. - Key claim is still $f$ being odd, that is to consider $f(yt)$ and $f(-y(-t))$ and compare them, swapping the roles of $t$ and $-t$. - The rest are substitutions according to results that was obtained in the step immediately before, nothing too out of the ordinary.