Problem

Source:

Tags: number theory



Is there a sequence $a_{1}, . . . , a_{2016}$ of positive integers, such that every sum $$a_{r} + a_{r+1} + . . . + a_{s-1} + a_{s}$$(with $1 \le r \le s \le 2016$) is a composite number, but: a) $GCD(a_{i}, a_{i+1}) = 1$ for all $i = 1, 2, . . . , 2015$; b) $GCD(a_{i}, a_{i+1}) = 1$ for all $i = 1, 2, . . . , 2015$ and $GCD(a_{i}, a_{i+2}) = 1$ for all $i = 1, 2, . . . , 2014$? $GCD(x, y)$ denotes the greatest common divisor of $x$, $y$. Proposed by Matija Bucić