Problem

Source: European Mathematical Cup, 2015, Junior, P3

Tags: number theory, divisor



Let $d(n)$ denote the number of positive divisors of $n$. For positive integer $n$ we define $f(n)$ as $$f(n) = d\left(k_1\right) + d\left(k_2\right)+ \cdots + d\left(k_m\right),$$where $1 = k_1 < k_2 < \cdots < k_m = n$ are all divisors of the number $n$. We call an integer $n > 1$ almost perfect if $f(n) = n$. Find all almost perfect numbers. Paulius Ašvydis