Problem

Source: own. For APMC 2016 #3

Tags: combinatorics



Let $a_1,a_2,\cdots$ be a strictly increasing sequence on positive integers. Is it always possible to partition the set of natural numbers $\mathbb{N}$ into infinitely many subsets with infinite cardinality $A_1,A_2,\cdots$, so that for every subset $A_i$, if we denote $b_1<b_2<\cdots$ be the elements of $A_i$, then for every $k\in \mathbb{N}$ and for every $1\le i\le a_k$, it satisfies $b_{i+1}-b_{i}\le k$?