Problem

Source:

Tags: combinatorics, graph



Let $G$ be a simple graph with $n$ vertices and $m$ edges. Two vertices are called neighbours if there is an edge between them. It turns out the $G$ does not contain any cycles of length from 3 to $2k$ (inclusive), where $k\geq2$ is a given positive integer. a) Prove that it is possible to pick a non-empty set $S$ of vertices of $G$ such that every vertex in $S$ has at least $\left\lceil \frac mn \right\rceil$ neighbours that are in $S$. ($\lceil x\rceil$ denotes the smallest integer larger than or equal to $x$.) b) Suppose a set $S$ as described in (a) is chosen. Let $H$ be the graph consisting of the vertices in $S$ and the edges between those vertices only. Let $v$ be a vertex of $H$. Prove that at least $\left\lceil \left(\frac mn -1\right)^k \right\rceil$ vertices of $H$ can be reached by starting at $v$ and travelling across the edges of $H$ for at most $k$ steps. (Note that $v$ itself satisfies this condition, since it can be reached by starting at $v$ and travelling along the edges of $H$ for 0 steps.)