Problem

Source:

Tags: geometry, circumcircle



Let $ABCDEF$ be a convex hexagon such that $\angle ACE = \angle BDF$ and $\angle BCA = \angle EDF$. Let $A_1=AC\cap FB$, $B_1=BD\cap AC$, $C_1=CE\cap BD$, $D_1=DF\cap CE$, $E_1=EA\cap DF$, and $F_1=FB\cap EA$. Suppose $B_1, C_1, D_1, F_1$ lie on the same circle $\Gamma$. The circumcircles of $\triangle BB_1F_1$ and $ED_1F_1$ meet at $F_1$ and $P$. The line $F_1P$ meets $\Gamma$ again at $Q$. Prove that $B_1D_1$ and $QC_1$ are parrallel. (Here, we use $l_1\cap l_2$ to denote the intersection point of lines $l_1$ and $l_2$)