Problem

Source: 2016 Olympic Revenge, Problem 5

Tags: function, number theory



Let $T$ the set of the infinite sequences of integers. For two given elements in $T$: $(a_{1},a_{2},a_{3},...)$ and $(b_{1},b_{2},b_{3},...)$, define the sum $(a_{1},a_{2},a_{3},...)+(b_{1},b_{2},b_{3},...)=(a_{1}+b_{1},a_{2}+b_{2},a_{3}+b_{3},...)$. Let $f: T\rightarrow$ $\mathbb{Z}$ a function such that: i) If $x\in T$ has exactly one of your terms equal $1$ and all the others equal $0$, then $f(x)=0$. ii)$f(x+y)=f(x)+f(y)$, for all $x,y\in T$. Prove that $f(x)=0$ for all $x\in T$