Problem

Source: 2016 Olympic Revenge, Problem 3

Tags: algebra, geometry



Let $\Gamma$ a fixed circunference. Find all finite sets $S$ of points in $\Gamma$ such that: For each point $P\in \Gamma$, there exists a partition of $S$ in sets $A$ and $B$ ($A\cup B=S$, $A\cap B=\phi$) such that $\sum_{X\in A}PX = \sum_{Y\in B}PY$.