Find the smallest possible value of the nonnegative number $\lambda$ such that the inequality $$\frac{a+b}{2}\geq\lambda \sqrt{ab}+(1-\lambda )\sqrt{\frac{a^2+b^2}{2}}$$holds for all positive real numbers $a, b$.
Problem
Source: 19th Hong Kong (China) Mathematical Olympiad(3 December, 2016) ,Q4
Tags: inequalities, algebra, China
11.12.2016 19:33
It's of course equivalent to \[\lambda \ge \frac{\sqrt{\frac{a^2+b^2}{2}}-\frac{a+b}{2}}{\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}}=\frac{1}{2} \cdot \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}}\]So $a=b=1$ implies $\lambda \ge \frac{1}{2}$ and the inequality for $\lambda=\frac{1}{2}$ holds of course by AM-GM.
12.12.2016 03:37
Tintarn wrote: It's of course equivalent to \[\lambda \ge \frac{\sqrt{\frac{a^2+b^2}{2}}-\frac{a+b}{2}}{\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}}=\frac{1}{2} \cdot \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}}\]So $a=b=1$ implies $\lambda \ge \frac{1}{2}$ and the inequality for $\lambda=\frac{1}{2}$ holds of course by AM-GM. Good. Because $ \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}}\leq1$ , so $\lambda_{min} =\frac{1}{2}.$ If $a, b$ be positive real numbers ,then $$a+b\geq\sqrt{ab}+\sqrt{\frac{a^2+b^2}{2}}$$
12.12.2016 11:38
Find the smallest possible value of the nonnegative number $\lambda$ such that the inequality $$\frac{a+b+c}{3}\geq\lambda \sqrt[3]{abc}+(1-\lambda )\sqrt[3]{\frac{a^3+b^3+c^3}{3}}$$for all positive real numbers $a, b,c$ holds.
12.12.2016 11:57
$\lambda_{min}=0.68713...$
12.12.2016 11:58
arqady wrote: $\lambda_{min}=0.6872...$ Thank arqady.
31.12.2016 12:11
Tintarn wrote: It's of course equivalent to \[\lambda \ge \frac{\sqrt{\frac{a^2+b^2}{2}}-\frac{a+b}{2}}{\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}}=\frac{1}{2} \cdot \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}}\]So $a=b=1$ implies $\lambda \ge \frac{1}{2}$ and the inequality for $\lambda=\frac{1}{2}$ holds of course by AM-GM. However you can't take a=b=1 becuase then $\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}$ = 0, so then the denominator of the first fraction is 0. You can't multiply both numerator and denominator by 0. Subbing a=b=1 into the original inequality yields 1$\ge$1, which is clearly true for all $\lambda$, and thus this does not show that $\lambda$ is greater than or equal to 1/2. I think the inequality should use limits...
31.12.2016 15:15
noobatron3000 wrote: However you can't take a=b=1 becuase then $\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}$ = 0, so then the denominator of the first fraction is 0. You can't multiply both numerator and denominator by 0. Subbing a=b=1 into the original inequality yields 1$\ge$1, which is clearly true for all $\lambda$, and thus this does not show that $\lambda$ is greater than or equal to 1/2. I think the inequality should use limits... Technically, this is of course correct. A priori, the inequality \[\lambda \ge \frac{1}{2} \cdot \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}}\]is only true when $a \ne b$. But then we see that it is a continuous function also at $a=b$ and hence the inequality must also hold there, so we are allowed to do that (of course you could also work with the limit). After all, the whole point of the problem is the fact that the equality case somehow is $a=b$ but plugging this into the original inequality does not yield anything interesting, as you correctly pointed out.
17.11.2017 22:31
sqing wrote: Find the smallest possible value of the nonnegative number $\lambda$ such that the inequality $$\frac{a+b}{2}\geq\lambda \sqrt{ab}+(1-\lambda )\sqrt{\frac{a^2+b^2}{2}}$$for all positive real numbers $a, b$ holds. See here too : https://www.cut-the-knot.org/Optimization/HongKong.shtml
Attachments:
08.01.2021 05:47
Find the smallest possible value of the nonnegative number $\lambda$ such that the inequality$$\frac{a_1+a_2+\cdots+a_n}{n}\geq\lambda \sqrt[n]{a_1a_2\cdots a_n}+(1-\lambda )\sqrt[n]{\frac{a_1^n+a_2^n+\cdots+a_n^n}{n}}$$for all positive real numbers $a_1,a_2,\cdots,a_n (n\ge 2) $ holds.
08.01.2021 07:07
Maybe usefull By weighted $AM-GM$ $$\sqrt[n]{\lambda \cdot a_1a_2\cdots a_n+(1-\lambda )\cdot \frac{a_1^n+a_2^n+\cdots+a_n^n}{n} } \ge \lambda \sqrt[n]{a_1a_2\cdots a_n}+(1-\lambda )\sqrt[n]{\frac{a_1^n+a_2^n+\cdots+a_n^n}{n}}$$
08.01.2021 10:59
arqady wrote: $\lambda_{min}=0.68713...$ How you find this?
08.01.2021 17:40
Adilet160205 wrote: Maybe usefull By weighted $AM-GM$ $$\sqrt[n]{\lambda \cdot a_1a_2\cdots a_n+(1-\lambda )\cdot \frac{a_1^n+a_2^n+\cdots+a_n^n}{n} } \ge \lambda \sqrt[n]{a_1a_2\cdots a_n}+(1-\lambda )\sqrt[n]{\frac{a_1^n+a_2^n+\cdots+a_n^n}{n}}$$ This is easy, because we consider the function $f(t)=\sqrt[n]{t}$, this is concave, so we can write Jensen: $f(\lambda x+(1-\lambda )y)\ge \lambda f(x)+(1-\lambda )f(y)$
05.07.2022 12:15
Tintarn wrote: It's of course equivalent to \[\lambda \ge \frac{\sqrt{\frac{a^2+b^2}{2}}-\frac{a+b}{2}}{\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}}=\frac{1}{2} \cdot \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}}\]So $a=b=1$ implies $\lambda \ge \frac{1}{2}$ and the inequality for $\lambda=\frac{1}{2}$ holds of course by AM-GM. If a=b, you're dividing by 0 when you go from one expression to another
05.07.2022 12:18
IMD2 wrote: Tintarn wrote: It's of course equivalent to \[\lambda \ge \frac{\sqrt{\frac{a^2+b^2}{2}}-\frac{a+b}{2}}{\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}}=\frac{1}{2} \cdot \frac{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}{\sqrt{\frac{a^2+b^2}{2}}+\frac{a+b}{2}}\]So $a=b=1$ implies $\lambda \ge \frac{1}{2}$ and the inequality for $\lambda=\frac{1}{2}$ holds of course by AM-GM. If a=b, you're dividing by 0 when you go from one expression to another He used the limit...