Problem

Source: 19th Hong Kong (China) Mathematical Olympiad(3 December, 2016) ,Q4

Tags: inequalities, algebra, China



Find the smallest possible value of the nonnegative number $\lambda$ such that the inequality $$\frac{a+b}{2}\geq\lambda \sqrt{ab}+(1-\lambda )\sqrt{\frac{a^2+b^2}{2}}$$holds for all positive real numbers $a, b$.